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Abstract

The immersed boundary–lattice Boltzmann method was presented recently to simulate the rigid particle motion. It com-
bines the desirable features of the lattice Boltzmann and immersed boundary methods. It uses a regular Eulerian grid for
the flow domain and a Lagrangian grid for the boundary. For the lattice Boltzmann method, as compared with the single-
relaxation-time collision scheme, the multi-relaxation-time collision scheme has better computational stability due to sep-
aration of the relaxations of various kinetic models, especially near the geometric singularity. So the multi-relaxation-time
collision scheme is used to replace the single-relaxation-time collision scheme in the original immersed boundary–lattice
Boltzmann method. In order to obtain an accurate result, very fine lattice grid is needed near the solid boundary. To reduce
the computational effort, local grid refinement is adopted to offer high resolution near a solid body and to place the outer
boundary far away from the body. So the multi-block scheme with the multi-relaxation-time collision model is used in the
immersed boundary–lattice Boltzmann method. In each block, uniform lattice spacing can still be used. In order to validate
the multi-block approach for the immersed boundary–lattice Boltzmann method with multi-relaxation-time collision
scheme, the numerical simulations of steady and unsteady flows past a circular cylinder and airfoil are carried out and
good results are obtained.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Lattice Boltzmann method; Immersed boundary method; Multi-block approach; Incompressible flow
1. Introduction

A novel numerical method called the immersed boundary method (IBM) was developed by Peskin in 1970s
in order to model the blood flow in the heart [1]. Since then, numerous modifications and refinements have
been proposed and a number of variants of this approach were proposed [2]. It uses a fixed Cartesian mesh
for the fluid. For the boundaries that are immersed in the fluid, the method uses a set of boundary points.
The basic idea of this method is to treat the boundary as deformable, but with high stiffness. A small distortion
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of the particle boundary will yield a force that tends to restore the boundary into its original shape. The bal-
ances of such forces are distributed into the Eulerian nodes of the grid and the Navier–Stokes equations with a
body force are solved over the whole fluid domain. The same approach of IBM was applied by Feng and
Michaelides in the lattice Boltzmann method (LBM) [3] to simulate the rigid particle motion. It combines
the desirable features of the lattice Boltzmann [4] and immersed boundary methods. The lattice grid is used
for the fluid flow field and the boundary points are to represent rigid particle surface. Any small deformation
results in a large force that is distributed into the fluid field. Hence, the lattice Boltzmann equation with body
force is solved to obtain the fluid velocity. The deformation is calculated by comparing the boundary point
and the reference point that undergoes rigid body motion with particles. The restoration force due to the
deformation is modeled by a linear spring relation, where the spring constant in the calculation should make
the particle surface stiff enough for the displacement to be small but not large enough that would affect the
convergence of the computations. There is no significant effect to the simulation results by choosing different
values of the spring constant as long as the particle deformation is small. In order to avoid the need to deter-
mine this free parameter of the spring constant, a direct forcing scheme is proposed by Feng and Michaelides
[5]. It presents a significant improvement over the previously introduced IBM–LBM where the forcing term
was computed using a penalty method and a user-defined parameter. It allows the enforcement of the rigid
body motion in a more efficient way.

In the original IBM–LBM, the single-relaxation-time collision scheme is used. Compared with the single-
relaxation-time collision scheme, the multi-relaxation-time collision scheme has better computational stability.
The multi-relaxation-time collision scheme [6] is constructed in the moment space based on the generalized
lattice Boltzmann equation according to the work of d’Humières [7]. This model has a maximum number
of adjustable parameters allowed by the freedom provided by a given discrete velocity set. These adjustable
parameters are used to optimize the properties of the model through a systematical analysis of the generalized
hydrodynamics of the model. Compared with the single-relaxation-time collision scheme, through the linear-
ized analysis [6], the multi-relaxation-time collision scheme gives the same results to the second order of accu-
racy for various flows. They are equivalent in the long wave length limit for macroscopic variables and the
difference is a high order effect. When flow problems possess mathematical singularities, which will affect
numerical solutions in high wave numbers, the multi-relaxation-time scheme has better computational stabil-
ity due to the separation of the relaxations of the various kinetic models, especially near the geometric singu-
larity. In attempting to obtain solutions for the high Reynolds number flow using single-relaxation-time
scheme, the pressure and velocity fields often exhibit spatial oscillations in regions of large gradients such
as stagnation point and sharp convex corners. For convection-dominated problems, these oscillations will
propagate over a large scale. However, the multi-relaxation-time scheme can efficiently suppress the oscillation
associated with the high-frequency pressure wave [8]. In order to improve the stability of IBM–LBM, in this
paper, the multi-relaxation-time scheme is used to replace the single-relaxation-time scheme in the original
IBM–LBM by Feng and Michaelides [3].

In the application of IBM–LBM, one limitation to the numerical efficiency is that it is constrained by a spe-
cial uniform lattice. The challenge for the uniform grid is to offer high resolution near a solid body and to
place the outer boundary far away from the body. So it is desirable to divide the computational domain into
a number of grid blocks so that within each block, uniform lattice spacing can be used [9]. For the grid block
near a solid body, the lattice spacing is very small, while near the outer boundary, the lattice spacing could be
very large. The multi-block approach has also been actively employed in the Navier–Stokes solvers with Carte-
sian coordinates, such as the work of Wan et al. [10]. Both the work of Wan et al. [10] and the present work use
the idea of fictitious overlapping sub-domains. The main difference is that in Wan et al.’s scheme, the blocks
with different grid sizes have different fictitious overlapping zones, while in the present method, only the coarse
block has fictitious overlapping zone. The blocks are connected through the interface. An accurate interface
treatment between neighboring blocks is derived by Yu et al. [9] to satisfy the continuity of mass, momentum
and stresses across the interface. This technique can also be applied to the lattice Boltzmann method with
multi-relaxation-time scheme [8]. In this paper, we used this multi-block method with multi-relaxation-time
collision scheme to improve the efficiency and accuracy of the IBM–LBM.

The accuracy of the multi-block scheme for the lattice Boltzmann method with multi-relaxation-time col-
lision scheme is studied by the Taylor problem and its application is validated by the driven cavity flow. Then,
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the multi-block method with multi-relaxation-time collision scheme is used for IBM–LBM. It is validated by
the steady and unsteady flows past a cylinder and an airfoil. Good results are obtained.

2. Immersed boundary–lattice Boltzmann method

2.1. Immersed boundary method

In the concept of immersed boundary method, the body force term is used in the fluid solver to implement
constraints acting on the fluid such as to mimic the presence of rigid boundary in appropriate regions of the
flow field. They should comprise sufficiently large number of grid points in order to represent the geometry of
the physical boundary.

For the two-dimensional domain X containing an immersed boundary in the form of closed curve C, the
configuration of the curve is given in the parametric form of X(s, t), 0 6 s 6 Lb, X(0, t) = X(Lb, t), where s

tracks a material point of the immersed boundary. The equations of motion of the system are:
q
ou

ot
þ u � ru

� �
¼ �rp þ lDuþ f ð1Þ

r � u ¼ 0 ð2Þ

f ðx; tÞ ¼
Z Lb

0

Fðs; tÞdðx� Xðs; tÞÞds ð3Þ

oXðs; tÞ
ot

¼ uðXðs; tÞ; tÞ ¼
Z

X
uðx; tÞdðx� Xðs; tÞÞdx ð4Þ

Fðs; tÞ ¼ SðXðs; tÞ; tÞ ð5Þ
Here x, u, p and f are the fixed Eulerian grid, fluid velocity, fluid pressure and the force density with respect to
dx = dxdy acting on the fluid, respectively. X and F are the Lagrangian points and boundary force density
with respect to ds. Eqs. (1) and (2) are the Navier–Stokes equations for a viscous incompressible fluid flow.
Eq. (3) distributes the restoring force from Lagrangian points on the boundary to Eulerian points in the flow
domain. So, the integral in Eq. (3) is over the boundary domain formed by the Lagrangian points. Eq. (4)
interpolates the velocity from Eulerian points in the flow domain to Lagrangian points on the boundary.
So, the integral in Eq. (4) is over the flow domain formed by the Eulerian points. Eq. (5) states that the bound-
ary force on the particular segment at time t is determined by the boundary configuration at time t, where the
function S satisfies a generalized Hooke’s law which will be shown in Eq. (9).

2.2. Lattice Boltzmann equation with single-relaxation-time collision model

For the IBM–LBM proposed by Feng and Michaelides [3], Eqs. (1) and (2) are represented in the lattice
Boltzmann frame with single-relaxation-time collision scheme as:
faðxþ eadt; t þ dtÞ � faðx; tÞ ¼ �
1

s
ðfaðx; tÞ � f eq

a ðx; tÞÞ þ
3

2
waf � ea ð6Þ
where s is the single-relaxation-time; fa is the distribution function; f eq
a is its corresponding equilibrium state;

dt is the time step; ea is the particle velocity and f(x, t) is the body force in the flow field. wa are coefficients that
depend on the selected particle velocity model. Take the nine-speed particle velocity model as an example.
w0 = 4/9, w1 = w2 = w3 = w4 = 1/9 and w5 = w6 = w7 = w8 = 1/36. There are several ways to include the con-
tribution of an external force into the lattice Boltzmann equation. The way used in the above equation is that
an external force is introduced by adding a term to the collision function.

2.3. Evaluation of force density at the boundary point

In order to model the interaction of fluid and rigid body, usually the penalty technique as applied by Höfler
and Schwarzer [11] is used. Firstly, introduce a number of m reference positions rj, j = 1, . . . ,m distributed over
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the rigid body with the initial boundary mesh width Ds. The rj are vectors related to the center of mass of the
rigid body. The associated spatial coordinates X r

j change only due to the movement and rotation of the rigid
body,
X r
jðtÞ ¼ XðtÞ þOðtÞ � rj ð7Þ
where O(t) describes the instantaneous orientation and X(t) is the position of the rigid body.
Associated with each reference position is a tracer X t

j, j = 1, . . . ,m which tracks the motion of the fluid,
_X t
jðtÞ ¼ uðX t

jÞ ð8Þ
where the dot indicates the time derivative along the trajectories. The tracers are passively convected with the
fluid. Whenever between the tracer and reference position, there occurs a non-vanishing difference in position
nj ¼ X t

jðtÞ � X r
jðtÞ, an additive contribution Fj to the force density fj in the fluid is generated that tends to drive

the fluid and thus trace back to the reference position and to diminish their relative velocity. This restoration
force, which is due to the displacement between the reference point and the boundary point, is modeled by a
linear spring relation:
Fj ¼ �knj ð9Þ
where k is the spring constant. The actual value of the spring constant should make the rigid body stiff enough
for the displacement to be small but not large enough to affect the convergence of computations. There is no
significant effect to the simulation results by choosing different values of the spring constant as long as the
deformation is small.

To avoid using a free parameter in Eq. (9) in the calculation, a direct forcing scheme for IBM–LBM is pro-
posed by Feng and Michaelides [5] recently. As mentioned above, a set of Lagrangian boundary points is used
to describe the boundary. Eq. (1) is also valid at the Lagrangian boundary points. Hence the force density at
the boundary points can be written as:
f ðx ¼ Xðs; tÞ; tÞ ¼ q
ou

ot
þ u � ru

� �
þrp � lDu ð10Þ
If we assume that the velocity and pressure field at the time step t = tn are known, then we have an explicit
scheme to determine the force term at the Lagrangian boundary points at time t = tn + 1, which is
f nþ1
i ¼ q

unþ1
i � un

i

Dt
þ un

i � run
i

� �
þrpn

i � lDun
i ð11Þ
where Dt is the time step.
In order to impose the boundary condition at t = tn + 1, the velocity at the immersed Lagrangian boundary

points is equal to the velocity of the boundary at the same point, Unþ1
i . So the force density at these Lagrang-

ian boundary points is given by
f nþ1
i ¼ q

Unþ1
i � un

i

Dt
þ un

i � run
i

� �
þrpn

i � lDun
i ð12Þ
2.4. Calculation of body force at the fluid point

The calculated force density using Eq. (12) is at a Lagrangian boundary point and we have to spread it into
the neighboring Eulerian nodes using the delta function. According to the work of Feng and Michaelides [5],
the force distributed to the Eulerian node in the flow domain can be calculated by
f ðx; tÞ ¼
Xm�1

j¼1

f ðXðsj; tÞ; tÞDjðx� Xðsj; tÞÞDsh ð13Þ
where Dj is a continuous kernel distribution function that approximates the delta function, Ds is the length of
the small boundary element and h is the mesh spacing of Eulerian grid. The choice of the kernel distribution
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function has to meet certain criteria [12]. For the two-dimensional simulations, the following equations are
used:
dðrÞ ¼

1
8h 3� 2jrj=hþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jrj=h� 4ðjrj=hÞ2

q� �
; jrj 6 h

1
8h 5� 2jrj=h�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�7þ 12jrj=h� 4ðjrj=hÞ2

q� �
; h 6 jrj 6 2h

0; otherwise

8>>>>><
>>>>>:

ð14Þ

Djðx� xjÞ ¼ dðx� xjÞdðy � yjÞ ð15Þ
The same continuous kernel distribution function has also to be used for Eq. (4). The process for IBM–LBM
can be illustrated as follows:

(1) Compute the force density at the boundary points using Eq. (12) and spread them into the Eulerian
points using Eq. (13).

(2) Solve the lattice Boltzmann equation (6) with the force term f n + 1(x) to update the velocity field.
(3) Interpolate the new velocity from the lattice to the boundary points using
unþ1ðsÞ ¼
X

x

unþ1ðxÞDðx� XnðsÞÞh2 ð16Þ
(4) Go back to (1) till the convergence criterion is satisfied.

3. Multi-relaxation-time collision scheme

In order to make the computation more stable, the multi-relaxation-time collision scheme is used to replace
the single-relaxation-time collision scheme in the original IBM–LBM [3].

In this paper, the nine-velocity model is used, which is given as:
ea ¼
ð0; 0Þ; a ¼ 0

ðcos½ða� 1Þp=2�; sin½ða� 1Þp=2�Þ; a ¼ 1–4ffiffiffi
2
p
ðcos½ð2a� 9Þp=4�; sin½ð2a� 9Þp=4�Þ; a ¼ 5–8

8><
>: ð17Þ
Given a set of 9 discrete velocities with corresponding distribution functions, one can construct a space based
on the (velocity) moments of {fa}. The following moments are chosen [6]:
jm1i ¼ ð1; 1; 1; 1; 1; 1; 1; 1; 1ÞT

jm2i ¼ ð�4;�1;�1;�1;�1; 2; 2; 2; 2ÞT

jm3i ¼ ð4; 2; 2; 2; 2; 1; 1; 1; 1ÞT

jm4i ¼ ð0; 1; 0;�1; 0; 1;�1;�1; 1ÞT

jm5i ¼ ð0;�2; 0; 2; 0; 1;�1;�1; 1ÞT

jm6i ¼ ð0; 0; 1; 0;�1; 1; 1;�1;�1ÞT

jm7i ¼ ð0; 0;�2; 0; 2; 1; 1;�1;�1ÞT

jm8i ¼ ð0; 1;�1; 1;�1; 0; 0; 0; 0ÞT

jm9i ¼ ð0; 0; 0; 0; 0; 1;�1; 1;�1ÞT

ð18Þ
Define a new set of variables.
|Ræ = (q,e, e, jx,qx, jy,qy,pxx,pxy)T, which are related to the distributions as follows:
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jRi ¼

q

e

e

u

qx

v

qy

pxx

pxy

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

¼

1 1 1 1 1 1 1 1 1

�4 �1 �1 �1 �1 2 2 2 2

4 �2 �2 �2 �2 1 1 1 1

0 1 0 �1 0 1 �1 �1 1

0 �2 0 2 0 1 �1 �1 1

0 0 1 0 �1 1 1 �1 �1

0 0 �2 0 2 1 1 �1 �1

0 1 �1 1 �1 0 0 0 0

0 0 0 0 0 1 �1 1 �1

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

f0

f1

f2

f3

f4

f5

f6

f7

f8

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

¼ M jF i ð19Þ
These 9 moments are separated into two groups: (q,u,v) are the conserved moments and they are locally
conserved in the collision process; (e, e,qx,qy,pxx,pxy) are the non-conserved moments and they relax linearly
towards their equilibrium values that are functions of the conserved quantities. The relaxation equations for
the non-conserved moments are prescribed as follows:
~e ¼ e� s2½e� eeq�
~e ¼ e� s3½e� eeq�
~qx ¼ qx � s5bqx � qeq

x c
~qy ¼ qy � s7bqy � qeq

y c
~pxx ¼ pxx � s8bpxx � peq

xxc
~pxy ¼ pxy � s9bpxy � peq

xy c

ð20Þ
where � denotes post-collision values. The equilibrium values of the non-conserved moments are chosen to be:
eeq ¼ �2qþ 3ðu2 þ v2Þ
eeq ¼ q� 3ðu2 þ v2Þ
qeq

x ¼ �u

qeq
y ¼ �v

peq
xx ¼ u2 � v2

peq
xy ¼ uv

ð21Þ
The evolution equation of the LBM with multi-relaxation-time collision scheme becomes
jf ðxþ eadt; t þ dtÞi � jf ðx; tÞi ¼ �M�1S½jRðx; tÞi � jReqðx; tÞi� ð22Þ

where
S � diagðs1; s2; . . . ; s9Þ

There is no need to do the matrix inverse since (M Æ MT) is a diagonal matrix with diagonal elements Æmb|mbæ.

The kinematic viscosity m and the bulk viscosity f of this model are:
m ¼ 1

3

1

s8

� 1

2

� �
¼ 1

3

1

s9

� 1

2

� �
ð23Þ

f ¼ 1

6

1

s2

� 1

2

� �
ð24Þ
Compared to Eq. (6) which uses the single-relaxation-time collision model, the stream process is the same. The
only difference is the collision process, which is replaced by the right hand side of Eq. (22).

When the LBM with multi-relaxation-time scheme is used for IBM, a force term has to be added. To
include the external force, one can simply add it to the momentum by u ¼

P
f eþ f dt. It is understood that,

in order to conserve the mass up to the second order in the Chapman–Enskog expansion, the net effect of the
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forcing term is that the resultant momentum is equal to u ¼
P

f eþ 1
2
f dt. Therefore it is preferable to execute

the forcing term in two steps, adding one-half of the forcing before relaxation and another-half after relaxa-
tion. This can be concisely illustrated as follows:

Step 1: Advection of {fa}.
Step 2: Compute the macroscopic variables with u ¼

P
f eþ 1

2
f dt.

Step 3: Relaxations of the moments (collision) with u0 ¼ uþ 1
2
f dt.

4. Multi-block method in the lattice Boltzmann model

When the LBM with multi-relaxation-time scheme is used for IBM, in order to offer high resolution near a
solid body and to place the outer boundary far away from the body, the multi-block method is used. An accu-
rate interface treatment between neighboring blocks is derived by Yu et al. [9] to satisfy the continuity of mass,
momentum and stresses across the interface.

4.1. Multi-block method for the single-relaxation-time scheme

To illustrate the basic idea, a two-block (a coarse block and a fine block) system as shown in Fig. 1 is con-
sidered in the derivation for the interfacial information exchange. The ratio of the lattice space between the
coarse and fine blocks is
n ¼ dxc=dxf ð25Þ

For a given Re, in order to keep a consistent viscosity m = (2s � 1)dx/6, the relation between relaxation times
sf on the fine block and on the coarse block must obey
sf ¼ 1
2
þ n sc � 1

2

� �
ð26Þ
For easy analysis, the density distributions are written as
faðx; tÞ ¼ f eq
a ðx; tÞ þ f neq

a ðx; tÞ ð27Þ

where f neq

a ðx; tÞ is the non-equilibrium part of the distribution function, based on which the stresses are eval-
uated as sij ¼ ð1� 1

2sÞ
P8

a¼1f neq
a ðeaieaj � 1

2
ea � eadijÞ in two dimensions.

Since the velocity and density are continuous across the interface between two blocks, the equilibrium part
across the interface follows:
f eq;c
a x; tð Þ ¼ f eq;f

a ðx; tÞ ð28Þ
Fig. 1. Interface structure between two blocks of different lattice spacing.
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To maintain the continuity for the stress across the interface, the non-equilibrium part across interface
follows:
1� 1

2sc

� �
f neq;c
a ¼ 1� 1

2sf

� �
f neq;f
a ð29Þ
This can also be written as
f neq;c
a ¼ n

sc

sf

f neq;f
a ð30Þ
The post-collision distribution is obtained by the single-relaxation-time scheme as
~f aðx; tÞ ¼ 1� 1

s

� �
f ðx; tÞ þ 1

s
f eq
a ðx; tÞ ¼ f eq

a ðx; tÞ þ
s� 1

s
f neq
a ðx; tÞ ð31Þ
For the coarse block, the post-collision distribution is written as:
~f c
a ¼ f eq;c

a þ sc � 1

sc

f neq;c
a ð32Þ
When transferring the data from the fine block to the coarse block, using Eqs. (28) and (30) for Eq. (32), one
obtains:
~f c
a ¼ f eq;f

a þ n
sc � 1

sf � 1
ð~f f

a � f eq;f
a Þ ð33Þ
where the post-collision distribution for the fine block is written as:
~f f
a ¼ f eq;f

a þ sf � 1

sf

f neq;f
a ð34Þ
Similarly, when transferring the data from the coarse block to the fine block, one obtains:
~f f
a ¼ f eq;c

a þ sf � 1

nðsc � 1Þ ð
~f c

a � f eq;c
a Þ ð35Þ
At the interface, the spatial interpolation is needed. The typical interface structure is shown in Fig. 1. The
line MN is the fine block boundary, while the line AB is the coarse block boundary. The coarse block bound-
ary is in the interior of the fine block and the fine block boundary is in the interior of the coarse block. This
arrangement of the interface is convenient for the information exchange between two neighboring blocks. On
the fine block boundary MN, the information on the nodes denoted by the open symbol ‘‘�’’ is known from
the data in the coarse block. However, the information on the nodes denoted by the solid symbol ‘‘�’’ is
unknown and there is no corresponding information on the coarse block. It can be obtained through spatial
interpolation based on the information at the nodes denoted by the open symbol ‘‘�’’ on the line MN. To elim-
inate the possibility of spatial asymmetry caused by interpolations, a symmetric cubic spline fitting is used [7].
That is
~f ðxÞ ¼ ai þ bixþ cix2 þ dix3; xi�1 6 x 6 xi; i ¼ 1; . . . ;m ð36Þ

where the constants (ai,bi,ci,di) are determined by using the continuity of the nodal conditions of ~f ; ~f 0; ~f 00 and
suitable end condition (such as zero second order derivative for ~f ).

For the lattice Boltzmann method, in order to make sure that the interface uses information at the correct
time level, the temporal interpolation at the interface is also needed. Three-point Lagrangian formulation is
used:
yðxÞ ¼
X3

k¼1

yk

Y3

j¼1
j 6¼k

x� xj

xk � xj

0
BB@

1
CCA ð37Þ
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4.2. Multi-block method for the multi-relaxation-time scheme

For the multi-relaxation-time collision scheme, the interface structure, spatial interpolation and temporal
interpolation are the same as for the single-relaxation-time collision scheme. The expression for the data trans-
fer on the interface has to be derived. But it is still based on the requirement of continuity of mass, momentum
and stresses across the interface.

To maintain the continuity of macroscopic variables across the interface, one can obtain:
Req;cðx; tÞ ¼ Req;fðx; tÞ ð38Þ

For the multi-relaxation-time scheme, stresses are determined by:
sxy ¼ 1� s8

2

� �
pxy � peq

xy

� �
¼ 1� s8

2

� �
pneq

xy ð39Þ

sxx ¼ 1� s9

2

� �
pxx � peq

xx

� �
¼ 1� s9

2

� �
pneq

xx ð40Þ
So to maintain the continuity of stresses across the interface, it requires that:
pneq;c
xy ¼ n

sf
8

sc
8

pneq;f
xy ð41Þ

pneq;c
xx ¼ n

sf
9

sc
9

pneq;f
xx ð42Þ
which can be written in the matrix form as
jRneq;ci ¼

0

e� eeq

e� eeq

0

qx � qeq
x

0

qy � qeq
y

pxx � peq
xx

pxy � peq
xy

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

c

¼ T f

0

e� eeq

e� eeq

0

qx � qeq
x

0

qy � qeq
y

pxx � peq
xx

pxy � peq
xy

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA
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ð43Þ
where T f ¼ diagð1; 1; 1; 1; 1; 1; 1; n sf
8

sc
8
; n

sf
9

sc
9
Þ.

Using Eqs. (38) and (43), to transfer the data from the fine block to the coarse block, one can obtain:
~f c ¼ M�1Rc �M�1ScðRc � Req;cÞ ¼ M�1Req;c þM�1ðI � ScÞRneq;c ¼ M�1Req;f þM�1ðI � ScÞT f Rneq;f ð44Þ

which can also be written as:
~f c ¼ M�1Req;f þM�1ðI � ScÞT fðI � SfÞ�1½M ~f f � Req;f � ð45Þ

For transferring the data from the coarse block to the fine block, one can similarly obtain
~f f ¼ M�1Req;c þM�1ðI � SfÞT cðI � ScÞ�1½M ~f c � Req;c� ð46Þ

with T c ¼ diagð1; 1; 1; 1; 1; 1; 1; sc

8

nsf
8

;
sc

9

nsf
9

Þ.
For the determination of relaxation parameters, in order to maintain the consistency of viscous coefficients,

three relaxation times s2, s8 and s9 need to be rescaled as
1

sf
i

¼ 1

2
þ n

1

sc
i
� 1

2

� �
; i ¼ 2; 8; 9 ð47Þ
For other relaxation parameters, they also need to be rescaled as Eq. (47). For the convergence of the solution,
the relaxation parameters s2, s3, s5 and s7 in the finest block are required to be larger than one [8].
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Fig. 2. Flow chart of the computational procedure.
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The flow chart of the computational sequence for the multi-block immersed boundary lattice Boltzmann
method with multi-relaxation-time collision model is shown in Fig. 2.

5. Results and discussions

As a precursor, the Taylor problem is solved to study the accuracy of the multi-block lattice Boltzmann
method with multi-relaxation-time collision scheme. It is a problem defined in a square domain
[0,2p] · [0, 2p] with periodic boundary condition. The initial condition is:
uðx; y; 0Þ ¼ � cosðxÞ sinðyÞ
vðx; y; 0Þ ¼ sinðxÞ cosðyÞ

ð48Þ
The exact solution is given by:
uðx; y; tÞ ¼ � cosðxÞ sinðyÞe�ð2t=ReÞ

vðx; y; tÞ ¼ sinðxÞ cosðyÞe�ð2t=ReÞ ð49Þ
Our calculations are conducted at the Reynolds number of 100. The L2 and L1 errors between the numerical
results and the exact solution are listed in Table 1. From Table 1, we can see that the accurate results can be
obtained when more than 20 points (N = 20) are used in each direction.



Table 1
Errors for the Taylor problem at Re = 100

Mesh size Time L2 error L1 error

10 · 10 0.5 9.041 · 10�4 1.110 · 10�3

1.0 8.328 · 10�4 1.022 · 10�3

1.5 2.988 · 10�4 3.658 · 10�3

2.0 3.358 · 10�4 4.123 · 10�3

20 · 20 0.5 6.460 · 10�5 9.069 · 10�5

1.0 1.046 · 10�4 8.447 · 10�5

1.5 7.270 · 10�5 6.713 · 10�5

2.0 1.151 · 10�4 7.586 · 10�5

50 · 50 0.5 4.248 · 10�5 5.972 · 10�5

1.0 3.848 · 10�5 5.409 · 10�5

1.5 2.010 · 10�5 2.753 · 10�5

2.0 4.240 · 10�5 5.941 · 10�5
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5.1. Driven cavity flows

To validate our code using the multi-block scheme for the lattice Boltzmann method with multi-relaxation-
time collision scheme, the numerical simulations of driven cavity flows are carried out.

For Re = 100, the multi-block is arranged as shown in Fig. 3. There are two levels, and the level ratio is 4.
Fine lattice of 41 · 41 is used in two bottom corner regions where two smaller recirculation zones appear.
Coarse grid is used in the central smooth region. The total number of grid points is 4864. With the same grid
points, if the uniform grid is used, the mesh size would be 70 · 70. The calculation on this uniform grid using
the standard LBM is also carried out for comparison.

According to the present study, as shown in Table 2, the center of the primary vortex is at x = 0.615,
y = 0.725, the center of the left corner vortex is at x = 0.034, y = 0.034, and the center of the right corner vor-
tex is at x = 0.945, y = 0.058 for the multi-block scheme. For the standard LBM, the center of the primary
vortex is at x = 0.615, y = 0.729, the center of the left corner vortex is at x = 0.033, y = 0.033, and the center
of the right corner vortex is at x = 0.945, y = 0.059. Both results are in good agreement with those of Ghia
Fig. 3. Schematic diagram of multi-block arrangement for the driven cavity flow.



Table 2
Comparison of the vortex centers with those of Ghia et al. [13]

Re Primary vortex Lower left vortex Lower right vortex

100

Present (0.615,0.725) (0.034,0.034) (0.945,0.058)
Ref. [13] (0.6172,0.7344) (0.0313,0.0391) (0.9453,0.0625)

5000

Present (0.515,0.535) (0.073,0.136) (0.807,0.073)
Ref. [13] (0.5117,0.5352) (0.0703,0.1367) (0.8086,0.0742)

Y. Peng et al. / Journal of Computational Physics 218 (2006) 460–478 471
et al. [13] (for Re = 100, the results of Ghia et al. are: x = 0.6172, y = 0.7344 for the primary vortex,
x = 0.0313, y = 0.0391 for the left corner vortex, and x = 0.9453, y = 0.0625 for the right corner vortex).

The above calculations are performed on PC-2.4GHz. The CPU time needed is 74.9 s and 79.3 s for the
multi-block scheme and the standard LBM, respectively. Although it will take some time to transform infor-
mation between blocks for the multi-block scheme, it converges faster because fine mesh is used in the flow
field where flow changes rapidly. This leads to the less CPU time needed for the multi-block scheme.

In order to obtain the same accuracy of numerical results at two bottom corners for the uniform grid,
161 · 161 mesh size is required for the standard LBM. This calculation is also carried out and the CPU time
needed to get the converged results is 639.41 s. It takes much longer CPU time as compared to the multi-block
scheme.

Fig. 4 shows the streamlines. It can be seen from this figure that, the streamlines are very smooth across the
interface between different blocks. This shows that the implementation of multi-block scheme for the lattice
Boltzmann method with multi-relaxation-time scheme has good property at the interface.

The same flow at Re = 5000 is also simulated. The streamlines are shown in Fig. 5. We can see from Fig. 5
that, there are three levels and seven blocks. Very fine grids belonging to the third level are used at four cor-
ners. According to the present study, as shown in Table 2, the center of the primary vortex is at x = 0.515,
y = 0.535, the center of the left corner vortex is at x = 0.073, y = 0.136, and the center of the right corner vor-
tex is at x = 0.807, y = 0.073. These results are in good agreement with those of Ghia et al. [13] (for Re = 5000,
the results of Ghia et al. are: x = 0.5117, y = 0.5352 for the primary vortex, x = 0.0703, y = 0.1367 for the left
corner vortex, and x = 0.8086, y = 0.0742 for the right corner vortex). Figs. 6 and 7 show velocity components
along vertical and horizontal center lines, respectively. They agree well with benchmark data.
Fig. 4. Streamlines for the driven cavity flow at Re = 100.



Fig. 5. Streamlines for the driven cavity flow at Re = 5000.
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Fig. 6. Distribution of u-velocity along vertical center line for driven cavity flow at Re = 5000.
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Fig. 7. Distribution of v-velocity along horizontal center line for driven cavity flow at Re = 5000.
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5.2. Steady and unsteady flows past a circular cylinder

To validate the multi-block scheme for IBM–LBM with multi-relaxation-time collision scheme, the numer-
ical simulation of the steady and unsteady flows past a circular cylinder is carried out.
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As shown in Fig. 8, there are three levels of blocks in the calculation. Block 1 to block 4 belong to the first
level; block 5 to block 8 belong to the second level and block 9 belongs to the finest level. The ratio of mesh
spacing between level two and level one is 2 and the ratio between level three and level two is 4. The cylinder is
immersed in block 9.

The Reynolds number in this flow is defined as
Re ¼ u1D
m

ð50Þ
where D is the diameter of the cylinder.
The drag force is contributed from two sources: the shear stress and the pressure distribution along the

body. For the immersed boundary method, it can be easily determined by [14]:
F D ¼ �
Z

X
f1 dx ð51Þ
where f1 is the x-component of the force density f . The drag coefficient is defined by
Cd ¼
F D

ð1=2Þqu2
1D

ð52Þ
When the body starts shedding a vortex, a lift force on the body is generated by the fluid. For the immersed
boundary method, it can be easily determined by:
F L ¼
Z

X
f2 dx ð53Þ
where f2 is the y-component of the force density f .
The dimensionless lift coefficient is defined by
Cl ¼
F L

ð1=2Þqu2
1D

ð54Þ
When the steady flow becomes unstable and the body starts shedding vortices, the frequency with which the
vortices are shed from the body is non-dimensionalized as
St ¼ fqD
u1

ð55Þ
where St is called the Strouhal number.
Fig. 8. Schematic diagram of multi-block arrangement for flow past a circular cylinder.
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In the present calculations, the fluid density is q = 1.0 and the far field velocity is u1 = 0.1. The computa-
tion starts with the given far field velocity. At the inlet, upper, lower and downstream boundaries, the equi-
librium distribution functions are used to implement the boundary conditions.

Firstly, the calculation of the steady flow at Re = 20 is carried out. Fig. 9 shows the streamlines when flow
reaches its final steady state. A pair of stationary recirculating eddies develop behind the cylinder. The length
of the recirculating region L, which is from the rearmost point of the cylinder to the end of the wake increases
with the Reynolds number. The calculated non-dimensional recirculating length defined as L/r for Re = 20 as
well as the previous computational and experimental data are listed in Table 3 [15–19]. Table 4 shows the cal-
culated drag coefficient together with the previous computational and experimental data. From Tables 3 and
4, we can see that our numerical results compare very well with the benchmark data.

Then the calculations of the unsteady flow at Re = 100 and Re = 200 are carried out. We choose the same
computational domain X = [0, 8] · [0, 8] and a cylinder with diameter of D = 0.30. The center of the cylinder is
located at (1.85, 4.0), which is the same as the one in the work of Lai and Peskin [14] using the immersed
Fig. 9. Streamlines for flow past a circular cylinder at Re = 20.

Table 3
Comparison of the recirculating length with previous studies

Authors Re = 20

Dennis and Chang [15] 1.88
Nieuwstadt and Keller [16] 1.786
Coutanceau and Bouard [17] 1.86
Fornberg [18] 1.82
He and Doolen [19] 1.842
Present 1.870

Table 4
Comparison of the drag coefficient with previous studies

Authors Re = 20

Dennis and Chang [15] 2.045
Nieuwstadt and Keller [16] 2.053
Fornberg [18] 2.000
He and Doolen [19] 2.152
Present 2.148
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boundary method with NS solver. Table 5 shows our numerical results together with those of Lai and Peskin
[14] and previous experimental and computational results [20,21] at Re = 100. Table 6 displays our numerical
results together with previous experiment and computational results [20–23] at Re = 200.

For Re = 100, from Table 5, we can see that the Strouhal number using present method has a better agree-
ment with the experimental data than the first order immersed boundary method of Lai and Peskin [14]. It
compares very well with the result of their second order scheme. In the paper of Saiki and Biringen [20],
the computed Strouhal numbers obtained from different researchers’ computations range from 0.16–0.18 at
Re = 100. As for the drag coefficient, our present result is closer to the experimental data [21] than that of
Lai and Peskin [14]. As mentioned in [14], the drag coefficient of Lai and Peskin [14] is larger than the exper-
imental data. It seems that the present work improves the accuracy of conventional immersed boundary
method. The improvement may be attributed to the use of a very fine mesh near the solid body through
the multi-block technique.

For Re = 200, from Table 6, we can see that our present results compare very well with the previous exper-
imental and computational results. The Strouhal number obtained from the present method is slightly higher
than the experimental value. However, it is better than that obtained by the majority of the previous compu-
tational studies.

The instantaneous vorticity contours of vortex shedding at Re = 100 are plotted in Fig. 10. We can see
clearly the Karman vortex street of the flow around a circular cylinder in these vorticity contours.

5.3. Steady flow over a NACA-0012 airfoil

For the practical applications of the multi-block IBM–LBM with multi-relaxation-time collision scheme,
the steady flow over NACA-0012 airfoil at the Reynolds number of Re = 500 with the zero angle of attack
was chosen for study. The multi-block arrangement is the same as that for the flow past a circular cylinder
shown in Fig. 8. The NACA-0012 airfoil is immersed in the finest block.

Similar to the flow past a circular cylinder, the fluid density is taken as q = 1.0 and the far field velocity is
u1 = 0.1. The computation starts with the given far field velocity. At the inlet, upper, lower and outlet bound-
aries, the equilibrium distribution functions are used to implement the boundary conditions.

The pressure coefficient and drag coefficient are, respectively, defined as
Table
Compa

Metho

First o
Second
Saiki a
Clift e
Presen

Table
Compa

Metho

Saiki a
Clift e
Berger
Presen
Cp ¼
ðP � p1Þ
1=2qu2

1
; Cd ¼

F D

1=2qu2
1l

ð56Þ
where l is the chord. Pressure on the airfoil surface is obtained from
5
rison of quantities at Re = 100 with Lai and Peskin [14] and previous computational and experiment results

d Cd Cl St

rder of Lai and Peskin [14] 1.4630 0.3290 0.144
order of Lai and Peskin [14] 1.4473 0.3299 0.165

nd Biringen [20] 1.26 – 0.171
t al. [21] 1.24 – –
t 1.18 0.317 0.167

6
rison of the quantities at Re = 200 with previous computational and experiment results

d Cd St

nd Biringen [20] 1.18 0.171
t al. [21] 1.16 –
and Wille [22] – 0.18–0.19

t 1.10 0.197



Fig. 10. Vorticity contours of the flow around a cylinder at Re = 100.
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pðsÞ ¼
X

x

pðxÞDðx� XnðsÞÞh2 ð57Þ
The discrete delta function in Eq. (57) is defined in Eqs. (14) and (15).
Fig. 11 shows the pressure contours and Fig. 12 shows the distribution of pressure coefficient along the air-

foil surface, respectively. They compare very well with the numerical results using a NS solver of CFL3D [24].
Fig. 11. Pressure contours for flow over NACA-0012 airfoil at Re = 500.

Fig. 12. Distribution of pressure coefficient along the airfoil NACA-0012 at Re = 500.



Fig. 13. Streamlines for flow over an airfoil at t = 7.13 (left) and t = 11.73 (right).
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For the drag coefficient, the present value of Cd = 0.176 compares very well with the result reported by Loc-
kard et al. [25] with 0.1762 obtained using a Navier–Stokes equation-based finite difference method.

5.4. Unsteady flow over an airfoil

The shape of the airfoil is mapped into a unit circle using the transformation
z ¼ 1

k
þ cþ kc2

1þ ck
ð58Þ
where z ¼ 1
k þ cþ kc2

1þck, k = reih and c = n + ig. The trailing edge of the airfoil is rounded off by defining
c ¼ nþ ð1� g2Þ
1
2

h i
ð1� dÞ ð59Þ
In this calculation, the shape of the airfoil is defined by
n ¼ �0:05214; g ¼ 0; d ¼ 0:025 and r ¼ tanhðk1Þ þ k4

k3
with:
k1 ¼ 2:0; k2 ¼ 2:8; r0 ¼ 0:02; k3 ¼ ½tanhðk1Þ þ tanhðk2Þ�½1� r0=ðr0 � 1Þ�;
k4 ¼ tanhðk2Þ � r0½tanhðk1Þ þ tanhðk2Þ�=ðr0 � 1Þ
The computation is conducted at 15� angle of attack with Re = 1000. The Strouhal number is defined as
St ¼ fl
u1

ð60Þ
where l is the chord. In the present study, the calculated Strouhal number is 0.20, while the value given by
Mehta and Lavan [26] is 0.2162. Fig. 13 shows the streamlines at t = 7.13 and t = 11.73. They compare very
well with those of Mehta and Lavan [26] at corresponding times.

6. Conclusions

The immersed boundary–lattice Boltzmann method combines the desirable features of the lattice Boltz-
mann and immersed boundary methods. The simplicity of the Cartesian grid for the Eulerian variables facil-
itates the LBM, and the generality of the curvilinear grid for the Lagrangian variables makes it easy to model
the flow problem. In order to avoid the need to determine the free parameter of the spring constant, a direct
forcing scheme is used. It presents a significant improvement over the previously introduced IBM–LBM where
the forcing term was computed using a penalty method and a user-defined parameter. It allows the enforce-
ment of the rigid body motion in a more efficient way.

In this paper, we have used the multi-relaxation-time collision scheme to replace the single-relaxation-time
collision scheme so as to improve the stability of the IBM–LBM for flows at high Reynolds numbers. To offer
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high resolution near a solid body and to place the outer boundary far away from the body, the multi-block
method is used for IBM–LBM with multi-relaxation-time collision scheme. For validation, the numerical
simulations of the steady and unsteady flows past a circular cylinder and the steady and unsteady flows over
an airfoil are carried out. The numerical results compare well with the benchmark data. The present technique
is easily applied to the arbitrarily complicated geometry and the moving boundary problem.
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